Complex Analysis Preliminary Exam

January 14, 2023

1. Find all complex solutions of the equation

$$
z^{6}=-8
$$

Your answer should be simplified and should be in the form $x+i y$ with $x, y \in \mathbb{R}$.
2. Prove that there is no function f such that f is analytic on the punctured unit disk $\{z \in \mathbb{C}: 0<|z|<1\}$ and f^{\prime} has a simple pole at 0 .
3. (a) For $R>0$, find a conformal map from $S_{R}=\{z \in \mathbb{C}:|\operatorname{Im}(z)|<R\}$ to the open unit disk.
(b) Prove that if f is entire and the imaginary part of f is bounded on the whole complex plane, then f must be constant.
4. Find

$$
\int_{-\infty}^{\infty} \frac{\cos 2 x}{\left(1+x^{2}\right)^{2}} d x
$$

5. Let

$$
h(z)=\frac{11}{2 z^{2}+9 z-5} .
$$

Find the Laurent expansion for h centered at 0 which converges at the point $z=-3 i$, and state precisely where this Laurent series converges.
6. Let D be the open disk defined by $|z-3 i|<2$. Find

$$
\int_{\partial D} f(z) d z
$$

where $f(z)=\frac{2 z-1}{z^{2}-z+2}$, where ∂D is oriented counterclockwise,
(a) using the Cauchy integral formula.
(b) using the Argument Principle.
7. Find a holomorphic function f on the disk defined by $|z-1|<1$ that satisfies

$$
f\left(\frac{n}{n+1}\right)=1-\frac{1}{n(n+1)}
$$

for all $n=2,3, \ldots$ Prove or disprove that there exists a different holomorphic function with the same property.
8. Let ϕ be the entire function defined by $\phi(z)=e^{i z}+10 z+2$ for $z \in \mathbb{C}$.
(a) Let B denote the open disk of radius 1 centered at $3-4 i \in \mathbb{C}$. Prove that there exists $z_{0} \in \mathbb{C}$ such that $\left|z_{0}-3+4 i\right|=2$ and $|\phi(w)|<\left|\phi\left(z_{0}\right)\right|$ for all $w \in B$.
(b) Let Δ denote the open disk of radius 1 centered at $0 \in \mathbb{C}$. Prove that there exists $z_{1} \in \Delta$ such that $\phi\left(z_{1}\right)=0$.

